Developmental Modes and Developmental Mechanisms can Channel Brain Evolution
نویسندگان
چکیده
Anseriform birds (ducks and geese) as well as parrots and songbirds have evolved a disproportionately enlarged telencephalon compared with many other birds. However, parrots and songbirds differ from anseriform birds in their mode of development. Whereas ducks and geese are precocial (e.g., hatchlings feed on their own), parrots and songbirds are altricial (e.g., hatchlings are fed by their parents). We here consider how developmental modes may limit and facilitate specific changes in the mechanisms of brain development. We suggest that altriciality facilitates the evolution of telencephalic expansion by delaying telencephalic neurogenesis. We further hypothesize that delays in telencephalic neurogenesis generate delays in telencephalic maturation, which in turn foster neural adaptations that facilitate learning. Specifically, we propose that delaying telencephalic neurogenesis was a prerequisite for the evolution of neural circuits that allow parrots and songbirds to produce learned vocalizations. Overall, we argue that developmental modes have influenced how some lineages of birds increased the size of their telencephalon and that this, in turn, has influenced subsequent changes in brain circuits and behavior.
منابع مشابه
P-157: Polymorphic Core Promoter GA-repeats Alter Gene Expression of The Early Embryonic Developmental Genes
Background: We examine the GA-repeat core promoters of MECOM and GABRA3 in human embryonic kidney-293 cell line and show that those GA-repeats have promoter activity,and those different alleles of the repeats can significantly alter gene expression.We propose a novel role for GA-repeat core promoters to regulate gene expression in the genes involved in development and evolution. Materials and M...
متن کاملA comparison of developmental and maternal toxicity of Perfluoro octane sulfonate (PFOS) in Mouse: Evaluation of histopathological and behavioral changes
Perfluorooctanesulfonate (PFOS) is a widely spread environmental contaminant. It accumulates in the brain and has potential neurotoxin effects. Due to chemical properties, PFOS shows persistency in the environment and therefore has potential hazardous effect. The risk of possible intra uterine exposure to PFOS poses a health concern for developmental effects. The goal of this study was survey o...
متن کاملEvo-devo and brain scaling: candidate developmental mechanisms for variation and constancy in vertebrate brain evolution.
Biologists have long been interested in both the regularities and the deviations in the relationship between brain, development, ecology, and behavior between taxa. We first examine some basic information about the observed ranges of fundamental changes in developmental parameters (i.e. neurogenesis timing, cell cycle rates, and gene expression patterns) between taxa. Next, we review what is kn...
متن کاملEstablishing a new animal model for muscle regeneration studies
Skeletal muscle injuries are one of the most common problems in the worldwide which impose a substantial financial burden to the health care system. Accordingly, it widely accepted that muscle regeneration is a promising approach that can be used to treat muscle injury patients. However, the underlying mechanisms of muscle regeneration have yet to be elucidated. The muscle structure and muscle...
متن کاملBrain evolution and development: adaptation, allometry and constraint.
Phenotypic traits are products of two processes: evolution and development. But how do these processes combine to produce integrated phenotypes? Comparative studies identify consistent patterns of covariation, or allometries, between brain and body size, and between brain components, indicating the presence of significant constraints limiting independent evolution of separate parts. These const...
متن کامل